Couverture de 3 ways to deploy your large language models on AWS

3 ways to deploy your large language models on AWS

3 ways to deploy your large language models on AWS

Écouter gratuitement

Voir les détails

À propos de cette écoute

In this episode of the AWS Developers Podcast, we dive into the different ways to deploy large language models (LLMs) on AWS. From self-managed deployments on EC2 to fully managed services like SageMaker and Bedrock, we break down the pros and cons of each approach. Whether you're optimizing for compliance, cost, or time-to-market, we explore the trade-offs between flexibility and simplicity. You'll hear practical insights into instance selection, infrastructure management, model sizing, and prototyping strategies. We also examine how services like SageMaker Jumpstart and serverless architectures like Bedrock can streamline your machine learning workflows. If you're building or scaling AI applications in the cloud, this episode will help you navigate your options and design a deployment strategy that fits your needs.
Les membres Amazon Prime bénéficient automatiquement de 2 livres audio offerts chez Audible.

Vous êtes membre Amazon Prime ?

Bénéficiez automatiquement de 2 livres audio offerts.
Bonne écoute !

    Ce que les auditeurs disent de 3 ways to deploy your large language models on AWS

    Moyenne des évaluations utilisateurs. Seuls les utilisateurs ayant écouté le titre peuvent laisser une évaluation.

    Commentaires - Veuillez sélectionner les onglets ci-dessous pour changer la provenance des commentaires.

    Il n'y a pas encore de critique disponible pour ce titre.