The Analytics Engine for All Your Data with Justin Borgman @ Starburst
Impossible d'ajouter des articles
Désolé, nous ne sommes pas en mesure d'ajouter l'article car votre panier est déjà plein.
Veuillez réessayer plus tard
Veuillez réessayer plus tard
Échec de l’élimination de la liste d'envies.
Veuillez réessayer plus tard
Impossible de suivre le podcast
Impossible de ne plus suivre le podcast
-
Lu par :
-
De :
À propos de ce contenu audio
In this episode we speak with Justin Borgman, Chairman & CEO at Starburst, which is based on open source Trino (formerly PrestoSQL) and was recently valued at $3.35 billion after securing their series D funding. In this episode we discuss convergence of DW’s / DL's, why data lakes fail and much much more.
Top 3 takeaways
- The data mesh architecture is gaining adoption more quickly in Europe due to GDPR.
- There were two main limitations of data lakes when comparing to DW’s, performance and CRUD operations. Performance has been resolved with query engines like Starburst and tools like Apache Iceberg, Apache Hudi and Delta Lake are starting to close the gap with CRUD operations.
- The principle of a single source of truth / storing everything in a single DL or DW is not always feasible or possible depending on regulations. Starburst is bridging that gap and enabling data mesh and data fabric architectures.
Vous êtes membre Amazon Prime ?
Bénéficiez automatiquement de 2 livres audio offerts.Bonne écoute !
Aucun commentaire pour le moment