Couverture de RAG & Reference-Free Evaluation: Scaling LLM Quality Without Ground Truth

RAG & Reference-Free Evaluation: Scaling LLM Quality Without Ground Truth

RAG & Reference-Free Evaluation: Scaling LLM Quality Without Ground Truth

Écouter gratuitement

Voir les détails

3 mois pour 0,99 €/mois

Après 3 mois, 9.95 €/mois. Offre soumise à conditions.

À propos de ce contenu audio

In this episode of Memriq Inference Digest - Leadership Edition, we explore how Retrieval-Augmented Generation (RAG) systems maintain quality and trust at scale through advanced evaluation methods. Join Morgan, Casey, and special guest Keith Bourne as they unpack the game-changing RAGAS framework and the emerging practice of reference-free evaluation that enables AI to self-verify without costly human labeling.

In this episode:

- Understand the limitations of traditional evaluation metrics and why RAG demands new approaches

- Discover how RAGAS breaks down AI answers into atomic fact checks using large language models

- Hear insights from Keith Bourne’s interview with Shahul Es, co-founder of RAGAS

- Compare popular evaluation tools: RAGAS, DeepEval, and TruLens, and learn when to use each

- Explore real-world enterprise adoption and integration strategies

- Discuss challenges like LLM bias, domain expertise gaps, and multi-hop reasoning evaluation

Key tools and technologies mentioned:

- RAGAS (Retrieval Augmented Generation Assessment System)

- DeepEval

- TruLens

- LangSmith

- LlamaIndex

- LangFuse

- Arize Phoenix

Timestamps:

0:00 - Introduction and episode overview

2:30 - What is Retrieval-Augmented Generation (RAG)?

5:15 - Why traditional metrics fall short for RAG evaluation

7:45 - RAGAS framework and reference-free evaluation explained

11:00 - Interview highlights with Shahul Es, CTO of RAGAS

13:30 - Comparing RAGAS, DeepEval, and TruLens tools

16:00 - Enterprise use cases and integration patterns

18:30 - Challenges and limitations of LLM self-evaluation

20:00 - Closing thoughts and next steps

Resources:

- "Unlocking Data with Generative AI and RAG" by Keith Bourne - Search for 'Keith Bourne' on Amazon and grab the 2nd edition

- Visit Memriq AI at https://Memriq.ai for more AI engineering deep-dives, guides, and research breakdowns

Thanks for tuning in to Memriq AI Inference Digest - Leadership Edition. Stay ahead in AI leadership by integrating continuous evaluation into your AI product strategy.

Les membres Amazon Prime bénéficient automatiquement de 2 livres audio offerts chez Audible.

Vous êtes membre Amazon Prime ?

Bénéficiez automatiquement de 2 livres audio offerts.
Bonne écoute !
    Aucun commentaire pour le moment