Unit 2 | Ep 02: The Null Hypothesis – Handling Missing Data
Impossible d'ajouter des articles
Échec de l’élimination de la liste d'envies.
Impossible de suivre le podcast
Impossible de ne plus suivre le podcast
-
Lu par :
-
De :
À propos de ce contenu audio
Welcome to Mindforge ML. In this episode, we tackle the most common enemy of data science: missing values.
Real-world data is rarely perfect. Sensors fail, forms get skipped, and files get corrupted. Simply deleting these gaps can ruin your model, but filling them incorrectly introduces bias. We explore the art of data imputation and the strategy behind "saving" your dataset.
Key topics:
The Root Cause: Understanding MCAR, MAR, and MNAR missing data patterns.
Deletion vs. Imputation: When to drop rows vs. when to fill them in.
Strategies: Mean/Median substitution, KNN imputation, and time-series filling.
Impact: How your choice of handling directly alters model predictions.
Learn to fix the gaps without breaking the truth.
Series: Mindforge ML | Unit 2Produced by: Chatake Innoworks Pvt. Ltd.Initiative: MindforgeAI
Vous êtes membre Amazon Prime ?
Bénéficiez automatiquement de 2 livres audio offerts.Bonne écoute !