How PayPal Uses Large Graph Neural Networks to Detect Bad Actors
Impossible d'ajouter des articles
Désolé, nous ne sommes pas en mesure d'ajouter l'article car votre panier est déjà plein.
Veuillez réessayer plus tard
Veuillez réessayer plus tard
Échec de l’élimination de la liste d'envies.
Veuillez réessayer plus tard
Impossible de suivre le podcast
Impossible de ne plus suivre le podcast
-
Lu par :
-
De :
À propos de ce contenu audio
How do you detect fraud when less than one percent of your network’s users are bad actors? In this episode, SigOpt’s Head of Engineering Michael McCourt speaks with Venkatesh Ramanathan, a Director of Data Science at PayPal, about his work using Graph Neural Networks to detect fraud across large financial networks.
- 0:23 - Intro
- 3:08 - AI/ML at AOL
- 4:24 - The scale of data today
- 6:11 – The tradeoffs of accuracy and interpretability
- 7:54 - What are Graph Neural Networks?
- 9:18 - Robustness of GNNs; how they work with blockchain networks
- 10:57 - The need for robust hardware for GNNs
- 12:44 - How PayPal uses SigOpt for hyperparameter search
- 15:12 - The importance of sample efficiency
- 16:51 - What's next for Data Science at PayPal
- 20:52 - Opportunities for academia to power industry insights
Learn more about SigOpt at sigopt.com and follow us on Twitter at twitter.com/sigopt Subscribe to our YouTube channel to watch Experiment Exchange interviews: https://www.youtube.com/channel/sigopt
Vous êtes membre Amazon Prime ?
Bénéficiez automatiquement de 2 livres audio offerts.Bonne écoute !
Aucun commentaire pour le moment