Do You Need A Vector Database in 2026? (ft Arjun Patel)
Impossible d'ajouter des articles
Échec de l’élimination de la liste d'envies.
Impossible de suivre le podcast
Impossible de ne plus suivre le podcast
-
Lu par :
-
De :
À propos de ce contenu audio
Join the Tool Use Discord: https://discord.gg/PnEGyXpjaX
Vector databases can be an important component for building reliable AI agents and scalable semantic search applications. In this episode, Arjun Patel from Pinecone breaks down how to optimize your RAG pipeline, choose the right embedding models (sparse vs. dense), and implement effective chunking strategies for better data retrieval. We also explore the new Pinecone plugin for Claude Code, demonstrating how to build a recommendation system and chat with your documents using Pinecone Assistant without writing complex code.
https://www.pinecone.io/
https://www.linkedin.com/in/arjunkirtipatel/
Connect with us
https://x.com/ToolUsePodcast
https://x.com/MikeBirdTech
00:00:00 - Intro
00:01:11 - What Vector Databases Unlock
00:04:40 - Optimal Chunking Strategies for RAG
00:09:07 - How Embedding Models Work
00:17:25 - Improving Search with Re-ranking
00:26:52 - SQL vs Vector Database Architecture
00:35:48 - Claude Code & Pinecone Assistant Demo
Subscribe for more insights on AI tools, productivity, and vector databases.
Tool Use is a weekly conversation with the top AI experts.
Vous êtes membre Amazon Prime ?
Bénéficiez automatiquement de 2 livres audio offerts.Bonne écoute !