Couverture de CausalML Book Ch13: DML Inference Under Weak Identification

CausalML Book Ch13: DML Inference Under Weak Identification

CausalML Book Ch13: DML Inference Under Weak Identification

Écouter gratuitement

Voir les détails

3 mois pour 0,99 €/mois

Après 3 mois, 9.95 €/mois. Offre soumise à conditions.

À propos de ce contenu audio

This episode explores advanced econometric methods for causal inference using Double/Debiased Machine Learning (DML). It focuses on applying DML to instrumental variable (IV) models, including partially linear IV models and interactive IV regression models (IRM) for estimating Local Average Treatment Effects (LATE). A significant portion addresses robust DML inference under weak identification, a common challenge where instruments provide limited information about the endogenous variable. The chapter revisits classic examples like the effect of institutions on economic growth and 401(k) participation on financial assets, demonstrating how DML can offer more robust and flexible analyses compared to traditional methods, especially in the presence of weak instruments.

Disclosure

  • The CausalML Book: Chernozhukov, V. & Hansen, C. & Kallus, N. & Spindler, M., & Syrgkanis, V. (2024): Applied Causal Inference Powered by ML and AI. CausalML-book.org; arXiv:2403.02467.
  • Audio summary is generated by Google NotebookLM https://notebooklm.google/
  • The episode art is generated by OpenAI ChatGPT
Les membres Amazon Prime bénéficient automatiquement de 2 livres audio offerts chez Audible.

Vous êtes membre Amazon Prime ?

Bénéficiez automatiquement de 2 livres audio offerts.
Bonne écoute !
    Aucun commentaire pour le moment