Bill Gibson: Trust Over Tech In Healthcare AI
Impossible d'ajouter des articles
Désolé, nous ne sommes pas en mesure d'ajouter l'article car votre panier est déjà plein.
Veuillez réessayer plus tard
Veuillez réessayer plus tard
Échec de l’élimination de la liste d'envies.
Veuillez réessayer plus tard
Impossible de suivre le podcast
Impossible de ne plus suivre le podcast
-
Lu par :
-
De :
À propos de ce contenu audio
Bill Gibson is an experienced technical leader who has led engineering and product teams across startups and large companies. He brings real-world perspective to AI implementation and product development.
Bill talks about:
- Anchoring AI features in natural workflows: don’t bolt on chatbots; embed intelligence where users already expect it.
- Enforcing trust through transparency: always label AI‑generated content and surface confidence scores and data provenance.
- Focusing on achievable use cases: massive datasets alone won’t guarantee success; start with narrowly scoped, high impact AI applications.
- Designing for model evolution: use abstraction layers (like Cursor or Windsurf) so you can swap underlying AI engines as they improve.
- Outsourcing selectively: retain your strategic “special sauce” and core architecture in‑ house, but consider contracting out standard, non‑differentiating features.
Key quote: “Trust is the whole thing… we need to make sure that we clearly differentiate that this is not a doc, this is not a nurse, this is not a medical practitioner. This is an AI.”
Vous êtes membre Amazon Prime ?
Bénéficiez automatiquement de 2 livres audio offerts.Bonne écoute !
Aucun commentaire pour le moment