Couverture de Deep Learning with PyTorch

Deep Learning with PyTorch

Build, Train, and Tune Neural Networks Using Python Tools

Aperçu
Essayer pour 0,00 €
Écoutez en illimité un large choix de livres audio, créations & podcasts Audible Original et histoires pour enfants.
Recevez 1 crédit audio par mois à échanger contre le titre de votre choix - ce titre vous appartient.
Gratuit avec l'offre d'essai, ensuite 9,95 €/mois. Possibilité de résilier l'abonnement chaque mois.

Deep Learning with PyTorch

De : Eli Stevens, Luca Antiga, Thomas Viehmann
Lu par : Mark Thomas
Essayer pour 0,00 €

9,95 € par mois après 30 jours. Résiliez à tout moment.

Acheter pour 22,40 €

Acheter pour 22,40 €

À propos de ce contenu audio

There are countless ways to put deep learning to good use: improved medical imaging, credit card fraud detection, long range weather forecasting. PyTorch puts these superpowers in your hands, providing a comfortable Python experience that gets you started quickly and then grows with you as you - and your deep-learning skills - become more sophisticated.

This book will make that journey engaging and fun.

About the technology

Although many deep learning tools use Python, the PyTorch library is truly Pythonic. Instantly familiar to anyone who knows PyData tools like NumPy and scikit-learn, PyTorch simplifies deep learning without sacrificing advanced features. It's excellent for building quick models, and it scales smoothly from laptop to enterprise. Because companies like Apple, Facebook, and JPMorgan Chase rely on PyTorch, it's a great skill to have as you expand your career options.

About the book

Deep Learning with PyTorch teaches you to create neural networks and deep learning systems with PyTorch. This practical book quickly gets you to work building a real-world example from scratch: a tumor image classifier. Along the way, it covers best practices for the entire DL pipeline, including the PyTorch Tensor API, loading data in Python, monitoring training, and visualizing results.

After covering the basics, the book will take you on a journey through larger projects.

What's inside

  • Training deep neural networks
  • Implementing modules and loss functions
  • Utilizing pretrained models from PyTorch Hub
  • Exploring code samples in Jupyter Notebooks

About the audience

For Python programmers with an interest in machine learning

About the authors

Eli Stevens had roles from software engineer to CTO and is currently working on machine learning in the self-driving-car industry. Luca Antiga is cofounder of an AI engineering company as well as a former PyTorch contributor. Thomas Viehmann is a PyTorch core developer and machine learning trainer and consultant.

PLEASE NOTE: When you purchase this title, the accompanying PDF will be available in your Audible Library along with the audio.

©2020 Manning Publications (P)2021 Manning Publications
Programmation et développement de logiciels
Les membres Amazon Prime bénéficient automatiquement de 2 livres audio offerts chez Audible.

Vous êtes membre Amazon Prime ?

Bénéficiez automatiquement de 2 livres audio offerts.
Bonne écoute !

    Ces titres pourraient vous intéresser

    Couverture de AI Engineering
    Couverture de Designing Machine Learning Systems
    Couverture de Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow Couverture de Deep Learning with Python (Second Edition)
    Couverture de Generative Deep Learning (2nd Edition)
    Couverture de Why Machines Learn
    Couverture de A PhD Is Not Enough!
    Aucun commentaire pour le moment