Couverture de Data Science

Data Science

Aperçu
Essayez pour 0,99 €/mois Essayer pour 0,00 €
Offre valable jusqu'au 12 décembre 2025 à 23 h 59.
Jusqu'à 90% de réduction sur vos 3 premiers mois.
Écoutez en illimité des milliers de livres audio, podcasts et Audible Originals.
Sans engagement. Vous pouvez annuler votre abonnement chaque mois.
Accédez à des ventes et des offres exclusives.
Écoutez en illimité un large choix de livres audio, créations & podcasts Audible Original et histoires pour enfants.
Recevez 1 crédit audio par mois à échanger contre le titre de votre choix - ce titre vous appartient.
Gratuit avec l'offre d'essai, ensuite 9,95 €/mois. Possibilité de résilier l'abonnement chaque mois.

Data Science

De : John D. Kelleher, Brendan Tierney
Lu par : Chris Sorensen
Essayez pour 0,99 €/mois Essayer pour 0,00 €

3 mois pour 0,99 €/mois, puis 9,95 €/mois. Possibilité de résilier chaque mois. Offre valable jusqu'au 12 décembre 2025 à 23 h 59.

9,95 € par mois après 30 jours. Résiliez à tout moment.

Acheter pour 16,33 €

Acheter pour 16,33 €

3 mois pour 0,99 €/mois Offre valable jusqu'au 12 décembre 2025. 3 mois pour 0,99 €/mois, puis 9,95 €/mois. Offre soumise à conditions.J'en profite

À propos de ce contenu audio

It has never been easier for organizations to gather, store, and process data. Use of data science is driven by the rise of big data and social media, the development of high-performance computing, and the emergence of such powerful methods for data analysis and modeling as deep learning.

Data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting non-obvious and useful patterns from large datasets. It is closely related to the fields of data mining and machine learning, but broader in scope. This book offers a brief history of the field, introduces fundamental data concepts, and describes the stages in a data science project. It considers data infrastructure and the challenges posed by integrating data from multiple sources, introduces the basics of machine learning, and discusses how to link machine learning expertise with real-world problems.

The book also reviews ethical and legal issues, developments in data regulation, and computational approaches to preserving privacy. Finally, it considers the future impact of data science and offers principles for success in data science projects.

©2018 Massachusetts Institute of Technology (P)2018 Gildan Media
Ingénierie
Les membres Amazon Prime bénéficient automatiquement de 2 livres audio offerts chez Audible.

Vous êtes membre Amazon Prime ?

Bénéficiez automatiquement de 2 livres audio offerts.
Bonne écoute !
    Aucun commentaire pour le moment