Speed vs Quality, Hallucinations, and the AI Learning Rabbit Hole - With Nir Zicherman
Impossible d'ajouter des articles
Désolé, nous ne sommes pas en mesure d'ajouter l'article car votre panier est déjà plein.
Veuillez réessayer plus tard
Veuillez réessayer plus tard
Échec de l’élimination de la liste d'envies.
Veuillez réessayer plus tard
Impossible de suivre le podcast
Impossible de ne plus suivre le podcast
-
Lu par :
-
De :
À propos de ce contenu audio
Sara breaks down perceptrons (1957!) as the tiny “matrix of lights” idea that eventually became neural networks—then we jump straight into modern AI chaos.
Oboe’s Nir Zuckerman walks us through the messy reality of building consumer-grade AI for education: every feature is a tradeoff between loading fast and being good, and “just use a better model” doesn’t magically solve it. We talk guardrails, web search, multi-model pipelines, and why learning tools should feel lightweight—more like curiosity than homework. Also: Becca’s “how does a computer work?” obsession and a book recommendation that might change your life.
🧠 AI Concepts & Foundations- Perceptron (Wikipedia)
- Neural Networks Explained
- Scaling Laws for Neural Language Models
- FLOPS (Floating Point Operations Per Second)
🎓 Learning, Education & AI
- Oboe
- AI as a Personal Tutor (Overview)
- Why Tutors Are So Effective
🏗️ Building AI Products
- Speed vs Quality Tradeoffs in LLM Apps
- LLM Orchestration Patterns
- Retrieval-Augmented Generation (RAG)
- LLM Hallucinations: Causes & Mitigation
📚 Books Mentioned
- Code: The Hidden Language of Computer Hardware and Software
- Perceptrons
🧪 History of AI
Vous êtes membre Amazon Prime ?
Bénéficiez automatiquement de 2 livres audio offerts.Bonne écoute !
Aucun commentaire pour le moment