Couverture de ShineTalks – Supervised Machine Learning

ShineTalks – Supervised Machine Learning

ShineTalks – Supervised Machine Learning

De : Sunshine Digital Services
Écouter gratuitement

À propos de ce contenu audio

यह पॉडकास्ट ShineTalks – Machine Learning आपको मशीन लर्निंग की दुनिया से सीधे जोड़ता है। इसमें हम आसान भाषा में समझाते हैं कि यह तकनीक कैसे काम करती है, इसका उपयोग किन क्षेत्रों में हो रहा है और आने वाले समय में यह कैसे बदलने वाला है हमारी दुनिया को। Sunshine Digital Services द्वारा प्रस्तुत यह शो छात्रों, प्रोफेशनल्स और टेक्नोलॉजी में रुचि रखने वाले हर व्यक्ति के लिए है जो भविष्य को समझना और उसमें अपना योगदान देना चाहता है।Sunshine Digital Services
Les membres Amazon Prime bénéficient automatiquement de 2 livres audio offerts chez Audible.

Vous êtes membre Amazon Prime ?

Bénéficiez automatiquement de 2 livres audio offerts.
Bonne écoute !
    Épisodes
    • ML EP 12: मॉडल मूल्यांकन और ट्यूनिंग: एक गाइड
      Jul 26 2025

      प्रदान किया गया स्रोत मशीन लर्निंग मॉडल के मूल्यांकन और ट्यूनिंग के महत्व की व्याख्या करता है। यह स्पष्ट करता है कि मॉडल का मूल्यांकन क्यों महत्वपूर्ण है, जिसमें केवल सटीकता से आगे बढ़ना और ओवरफिटिंग या अंडरफिटिंग से बचना शामिल है। पाठ सटीकता, प्रेसिजन, रिकॉल, F1 स्कोर, और ROC-AUC जैसी प्रमुख मूल्यांकन मेट्रिक्स को भी परिभाषित करता है, साथ ही भविष्यवाणियों को विज़ुअलाइज़ करने के लिए कन्फ्यूजन मैट्रिक्स का उपयोग कैसे करें, यह भी बताता है। इसके अतिरिक्त, यह मॉडल ट्यूनिंग की अवधारणा को कवर करता है, जिसमें हाइपरपैरामीटर को समायोजित करना और क्रॉस-वैलिडेशन जैसी तकनीकों का उपयोग करना शामिल है। अंत में, यह वास्तविक दुनिया में प्रासंगिकता, लाभ, और कमियों पर प्रकाश डालता है, इस बात पर जोर देता है कि प्रभावी एमएल मॉडल बनाने के लिए ये चरण महत्वपूर्ण हैं।

      Afficher plus Afficher moins
      6 min
    • ML EP 11: ग्रेडिएंट बूस्टिंग और XGBoost का परिचय
      Jul 25 2025

      इस दस्तावेज़ में मशीन लर्निंग में ग्रेडिएंट बूस्टिंग और XGBoost की अवधारणाओं पर विस्तार से चर्चा की गई है, जो शक्तिशाली एन्सेम्बल विधियाँ हैं। यह बताता है कि बूस्टिंग कैसे काम करती है, जहाँ प्रत्येक नया मॉडल पिछले मॉडल की त्रुटियों को सुधारता है। पाठ में XGBoost की अनूठी विशेषताओं पर प्रकाश डाला गया है, जैसे कि इसकी गति, मापनीयता, और बेहतर प्रदर्शन के लिए अनुकूलन। इसमें ग्रेडिएंट बूस्टिंग और रैंडम फ़ॉरेस्ट के बीच तुलना भी की गई है, और धोखाधड़ी का पता लगाने तथा क्रेडिट स्कोरिंग जैसे वास्तविक दुनिया के अनुप्रयोगों को भी समझाया गया है। अंत में, यह इन तकनीकों के फायदे और नुकसान का सारांश देता है, जिसमें उनकी उच्च सटीकता और ओवरफिटिंग की संवेदनशीलता शामिल है।

      Afficher plus Afficher moins
      7 min
    • ML EP 10: नई बायस: स्पैम फ़िल्टर और उससे आगे
      Jul 21 2025

      दिए गए स्रोत नैवे बेयस नामक एक वर्गीकरण एल्गोरिथम का परिचय देते हैं, जो संभाव्यता के आधार पर निर्णय लेने में कंप्यूटर की सहायता करता है। यह स्पैम पहचान जैसे कार्यों के लिए उपयोग किए जाने वाले बेयस प्रमेय पर आधारित है, हालाँकि यह मानता है कि सभी विशेषताएं एक दूसरे से स्वतंत्र हैं। दस्तावेज़ इस तकनीक के काम करने के तरीके को बताता है, जिसमें वर्गों की संभावनाओं की गणना करना शामिल है और सबसे अधिक स्कोर वाले को चुनना शामिल है। यह ईमेल को फ़िल्टर करने, भावनाओं का विश्लेषण करने और चिकित्सा निदान में सहायता करने सहित इसके वास्तविक दुनिया के अनुप्रयोगों को भी उजागर करता है। अंत में, यह अपनी तेजी और सादगी को लाभ के रूप में जबकि इसकी स्वतंत्रता धारणा को एक नुकसान के रूप में सूचीबद्ध करते हुए, एल्गोरिथम के फायदे और नुकसान पर चर्चा करता है।

      Afficher plus Afficher moins
      6 min
    Aucun commentaire pour le moment