Practical MLOps for Network Operations at Uber
Impossible d'ajouter des articles
Désolé, nous ne sommes pas en mesure d'ajouter l'article car votre panier est déjà plein.
Veuillez réessayer plus tard
Veuillez réessayer plus tard
Échec de l’élimination de la liste d'envies.
Veuillez réessayer plus tard
Impossible de suivre le podcast
Impossible de ne plus suivre le podcast
-
Lu par :
-
De :
À propos de ce contenu audio
Host Philip Gervasi talks with Uber's Vishnu Acharya about how Uber applies machine learning and MLOps to network operations at hyperscale. Vishnu explains Uber’s intentionally simple network design across on-prem and multi-cloud, then shares practical machine learning use cases like predictive capacity planning, hardware failure rate-tracking, and alert correlation to reduce noise and speed mitigation. They also discuss organizational issues, including building blended network/software teams, partnering with internal ML groups, and focusing on service-level outcomes over hype.
Vous êtes membre Amazon Prime ?
Bénéficiez automatiquement de 2 livres audio offerts.Bonne écoute !
Aucun commentaire pour le moment