ML - EP 11 : एनसेम्बल लर्निंग मॉडल्स और उनके उपयोग
Impossible d'ajouter des articles
Désolé, nous ne sommes pas en mesure d'ajouter l'article car votre panier est déjà plein.
Veuillez réessayer plus tard
Veuillez réessayer plus tard
Échec de l’élimination de la liste d'envies.
Veuillez réessayer plus tard
Impossible de suivre le podcast
Impossible de ne plus suivre le podcast
-
Lu par :
-
De :
À propos de ce contenu audio
एंसेम्बल लर्निंग मॉडल भविष्य कहनेवाला प्रदर्शन को बेहतर बनाने के लिए कई एल्गोरिदम को जोड़ते हैं। यह दृष्टिकोण, जिसमें रैंडम फ़ॉरेस्ट, अडाबूस्ट, एक्सजीबूस्ट और स्टैकिंग तकनीकें शामिल हैं, व्यक्तिगत मॉडल की तुलना में अधिक सटीक और मजबूत परिणाम प्रदान करता है। प्रत्येक मॉडल की अपनी विशिष्ट कार्यप्रणाली और उपयोग के मामले हैं, जैसे कि क्रेडिट जोखिम मूल्यांकन या फेस रिकॉग्निशन, जो उन्हें विभिन्न जटिल वास्तविक दुनिया की समस्याओं को हल करने में अमूल्य उपकरण बनाते हैं। संक्षेप में, ये मॉडल कमजोर शिक्षार्थियों को मजबूत शिक्षार्थियों में बदलकर समग्र सटीकता और मजबूती बढ़ाते हैं, जिससे overfitting को कम किया जा सकता है और डेटा विज्ञान में क्रांति लाई जा सकती है।
Vous êtes membre Amazon Prime ?
Bénéficiez automatiquement de 2 livres audio offerts.Bonne écoute !
Aucun commentaire pour le moment