Couverture de 🤖 Inference-Time Scaling for Generalist Reward Modeling

🤖 Inference-Time Scaling for Generalist Reward Modeling

🤖 Inference-Time Scaling for Generalist Reward Modeling

Écouter gratuitement

Voir les détails

À propos de ce contenu audio

This paper explores enhancing reward modeling (RM) for large language models (LLMs) by improving inference-time scalability. The authors introduce Self-Principled Critique Tuning (SPCT), a novel learning method that encourages RMs to generate their own guiding principles and accurate critiques through online reinforcement learning. Their approach, embodied in the DeepSeek-GRM models, utilizes pointwise generative reward modeling for greater flexibility. By employing parallel sampling and a meta RM to refine the reward voting process, they demonstrate significant improvements in the quality and scalability of their GRMs across various benchmarks. Notably, inference-time scaling with their method shows competitive or superior performance compared to simply increasing model size.

Les membres Amazon Prime bénéficient automatiquement de 2 livres audio offerts chez Audible.

Vous êtes membre Amazon Prime ?

Bénéficiez automatiquement de 2 livres audio offerts.
Bonne écoute !
    Aucun commentaire pour le moment