Couverture de Unit 2 | Ep 04: The Great Equalizer – Feature Scaling

Unit 2 | Ep 04: The Great Equalizer – Feature Scaling

Unit 2 | Ep 04: The Great Equalizer – Feature Scaling

Écouter gratuitement

Voir les détails

À propos de ce contenu audio

Welcome to Mindforge ML. In this episode, we explore Feature Scaling—the mathematics of fairness in machine learning.

When one feature ranges from 0-1 and another from 0-10,000, your model gets confused. We discuss how to bring all your data to a level playing field without losing the relationships between them.

Key topics:

  • Normalization vs. Standardization: The battle between Min-Max and Z-Score.

  • Algorithm Sensitivity: Why KNN and SVMs fail without scaling, while Random Forests don't care.

  • Robust Scaling: How to scale data that is full of outliers.

  • Data Leakage: The golden rule of fit_transform() vs. transform().

Make sure your model listens to every feature equally.

Series: Mindforge ML | Unit 2Produced by: Chatake Innoworks Pvt. Ltd.Initiative: MindforgeAI

Les membres Amazon Prime bénéficient automatiquement de 2 livres audio offerts chez Audible.

Vous êtes membre Amazon Prime ?

Bénéficiez automatiquement de 2 livres audio offerts.
Bonne écoute !
    Aucun commentaire pour le moment