Couverture de Deterministic by Design: Why "Temp=0" Still Drifts and How to Fix It

Deterministic by Design: Why "Temp=0" Still Drifts and How to Fix It

Deterministic by Design: Why "Temp=0" Still Drifts and How to Fix It

Écouter gratuitement

Voir les détails

3 mois pour 0,99 €/mois

Après 3 mois, 9.95 €/mois. Offre soumise à conditions.

À propos de ce contenu audio

Send us a text

Why do LLMs still give different answers even with temperature set to zero? In this episode of The Second Brain AI Podcast, we unpack new research from Thinking Machines Lab on defeating nondeterminism in LLM inference. We cover the surprising role of floating-point math, the real system-level culprit, lack of batch invariance, and how redesigned kernels can finally deliver bit-identical outputs. We also explore the trade-offs, real-world implications for testing and reliability, and how this breakthrough enables reproducible research and true on-policy reinforcement learning.

Sources:

  • Defeating Nondeterminism in LLM Inference
  • Non-Determinism of “Deterministic” LLM Settings
Les membres Amazon Prime bénéficient automatiquement de 2 livres audio offerts chez Audible.

Vous êtes membre Amazon Prime ?

Bénéficiez automatiquement de 2 livres audio offerts.
Bonne écoute !
    Aucun commentaire pour le moment