🔬 BIG-bench: Quantifying Language Model Capabilities
Impossible d'ajouter des articles
Échec de l’élimination de la liste d'envies.
Impossible de suivre le podcast
Impossible de ne plus suivre le podcast
-
Lu par :
-
De :
À propos de ce contenu audio
This document introduces BIG-bench, a large and diverse benchmark designed to evaluate the capabilities of large language models across over two hundred challenging tasks. It highlights the limitations of existing benchmarks and argues for the necessity of more comprehensive assessments to understand the transformative potential of these models. The paper presents performance results for various models, including Google's BIG-G and OpenAI's GPT, alongside human rater baselines, revealing that while model performance generally improves with scale, it remains below human levels. Furthermore, the research explores aspects like model calibration, the impact of task phrasing, and the presence of social biases, offering insights into the strengths and weaknesses of current language models.
Vous êtes membre Amazon Prime ?
Bénéficiez automatiquement de 2 livres audio offerts.Bonne écoute !