Couverture de Graph-Powered Machine Learning

Graph-Powered Machine Learning

Aperçu
Essayez pour 0,99 €/mois Essayer pour 0,00 €
Offre valable jusqu'au 29 janvier 2026 à 23 h 59.
Jusqu'à 90% de réduction sur vos 3 premiers mois.
Écoutez en illimité des milliers de livres audio, podcasts et Audible Originals.
Sans engagement. Vous pouvez annuler votre abonnement chaque mois.
Accédez à des ventes et des offres exclusives.
Écoutez en illimité un large choix de livres audio, créations & podcasts Audible Original et histoires pour enfants.
Recevez 1 crédit audio par mois à échanger contre le titre de votre choix - ce titre vous appartient.
Gratuit avec l'offre d'essai, ensuite 9,95 €/mois. Possibilité de résilier l'abonnement chaque mois.

Graph-Powered Machine Learning

De : Alessandro Negro
Lu par : Julie Brierley
Essayez pour 0,99 €/mois Essayer pour 0,00 €

3 mois pour 0,99 €/mois, puis 9,95 €/mois. Possibilité de résilier chaque mois. Offre valable jusqu'au 29 janvier 2026 à 23 h 59.

9,95 € par mois après 30 jours. Résiliez à tout moment.

Acheter pour 22,40 €

Acheter pour 22,40 €

3 mois pour 0,99 €/mois

Après 3 mois, 9.95 €/mois. Offre soumise à conditions.

À propos de ce contenu audio

Upgrade your machine learning models with graph-based algorithms, the perfect structure for complex and interlinked data.

In Graph-Powered Machine Learning, you will learn:

  • The lifecycle of a machine learning project
  • Graphs in big data platforms
  • Data source modeling using graphs
  • Graph-based natural language processing, recommendations, and fraud detection techniques
  • Graph algorithms
  • Working with Neo4J

Graph-Powered Machine Learning teaches to use graph-based algorithms and data organization strategies to develop superior machine learning applications. You’ll dive into the role of graphs in machine learning and big data platforms, and take an in-depth look at data source modeling, algorithm design, recommendations, and fraud detection. Explore end-to-end projects that illustrate architectures and help you optimize with best design practices.

Author Alessandro Negro’s extensive experience shines through in every chapter, as you learn from examples and concrete scenarios based on his work with real clients!

About the Technology

Identifying relationships is the foundation of machine learning. By recognizing and analyzing the connections in your data, graph-centric algorithms like K-nearest neighbor or PageRank radically improve the effectiveness of ML applications.

About the Audiobook

Graph-Powered Machine Learning teaches you how to exploit the natural relationships in structured and unstructured datasets using graph-oriented machine learning algorithms and tools. In this authoritative audiobook, you’ll master the architectures and design practices of graphs, and avoid common pitfalls. Author Alessandro Negro explores examples from real-world applications that connect GraphML concepts to real world tasks.

About the Author

Alessandro Negro is the chief scientist at GraphAware. He has been a speaker at many conferences, and holds a PhD in Computer Science.

PLEASE NOTE: When you purchase this title, the accompanying PDF will be available in your Audible Library along with the audio.

©2021 Manning Publications (P)2022 Manning Publications
Les membres Amazon Prime bénéficient automatiquement de 2 livres audio offerts chez Audible.

Vous êtes membre Amazon Prime ?

Bénéficiez automatiquement de 2 livres audio offerts.
Bonne écoute !

    Ces titres pourraient vous intéresser

    Couverture de Why Machines Learn
    Couverture de Hands-On Large Language Models
    Couverture de Terraform: Up and Running (3rd Edition)
    Couverture de AI Engineering
    Couverture de Designing Machine Learning Systems
    Couverture de Generative AI on AWS
    Couverture de Prompt Engineering for Generative AI
    Couverture de Generative Deep Learning (2nd Edition)
    Aucun commentaire pour le moment