Couverture de Deep Learning

Deep Learning

MIT Press Essential Knowledge Series

Aperçu
Essayez pour 0,99 €/mois Essayer pour 0,00 €
Offre valable jusqu'au 12 décembre 2025 à 23 h 59.
Jusqu'à 90% de réduction sur vos 3 premiers mois.
Écoutez en illimité des milliers de livres audio, podcasts et Audible Originals.
Sans engagement. Vous pouvez annuler votre abonnement chaque mois.
Accédez à des ventes et des offres exclusives.
Écoutez en illimité un large choix de livres audio, créations & podcasts Audible Original et histoires pour enfants.
Recevez 1 crédit audio par mois à échanger contre le titre de votre choix - ce titre vous appartient.
Gratuit avec l'offre d'essai, ensuite 9,95 €/mois. Possibilité de résilier l'abonnement chaque mois.

Deep Learning

De : John D. Kelleher
Lu par : Joel Richards
Essayez pour 0,99 €/mois Essayer pour 0,00 €

3 mois pour 0,99 €/mois, puis 9,95 €/mois. Possibilité de résilier chaque mois. Offre valable jusqu'au 12 décembre 2025 à 23 h 59.

9,95 € par mois après 30 jours. Résiliez à tout moment.

Acheter pour 12,56 €

Acheter pour 12,56 €

3 mois pour 0,99 €/mois Offre valable jusqu'au 12 décembre 2025. 3 mois pour 0,99 €/mois, puis 9,95 €/mois. Offre soumise à conditions.J'en profite

À propos de ce contenu audio

Deep learning is an artificial intelligence technology that enables computer vision, speech recognition in mobile phones, machine translation, AI games, driverless cars, and other applications. When we use consumer products from Google, Microsoft, Facebook, Apple, or Baidu, we are often interacting with a deep learning system. In this volume in the MIT Press Essential Knowledge series, computer scientist John Kelleher offers an accessible and concise but comprehensive introduction to the fundamental technology at the heart of the artificial intelligence revolution.

Kelleher explains some of the basic concepts in deep learning, presents a history of advances in the field, and discusses the current state of the art. He describes the most important deep learning architectures, including autoencoders, recurrent neural networks, and long short-term networks, as well as such recent developments as Generative Adversarial Networks and capsule networks. He also provides a comprehensive introduction to the two fundamental algorithms in deep learning: gradient descent and backpropagation. Finally, Kelleher considers the future of deep learning-major trends, possible developments, and significant challenges.

©2019 Massachusetts Institute of Technology (P)2019 Gildan Media
Sciences informatiques
Les membres Amazon Prime bénéficient automatiquement de 2 livres audio offerts chez Audible.

Vous êtes membre Amazon Prime ?

Bénéficiez automatiquement de 2 livres audio offerts.
Bonne écoute !
    Aucun commentaire pour le moment